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National University, Canberra, ACT, 2600, Australia 
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Abstract. Analytic expressions for the magnetic field of a toroidal stellarator produced 
by a set of finite-size helical conductors wound on a torus have been obtained by a direct 
application of the Biot-Savart law. The effects of toroidal curvature have been included 
as toroidal perturbations which break the helical symmetry of a corresponding straight 
system. On expressing the problem of field line behaviour as the problem of a conservative 
Hamiltonian dynamical system under small non-stationary perturbations, approximate 
toroidal magnetic surfaces have been obtained by an asymptotic method. Numerical 
examples for simple cases are given to illustrate the effects of toroidal curvature. 

1. Introduction 

Calculations of stellarator magnetic fields in toroidal geometry are important ( a )  for 
plasma containment in stellarators and torsatrons and ( b )  for stabilisation of MHD 

modes by means of vacuum rotational transforms produced by external helical coils 
in tokamaks (Hicks et a1 1980) and in high+? diffuse pinches (Ohkawa et a1 1980). 
Analysis of toroidal stellarator magnetic fields has been carried out by numerous 
authors (see, for example, Miyamoto 1978, and references therein). However, there 
are important reasons to motivate yet another perturbative theory which is the main 
concern of this paper. 

It is well known that the magnetic field line equations of a cylindrical stellarator 
possess an exact invariant which may be identified as the flux function of magnetic 
surfaces. The existence of this invariant is a direct consequence of helical symmetry 
in a straight system and this is independent of the amplitude or the pitch of the helical 
field. Moreover, the ‘motion’ of the field lines may be described by an integrable 
‘Hamiltonian’ system (Filonenko et a1 1967). Much of our intuition on stellarator 
magnetic fields has been developed from detailed studies of this case (Morozov and 
Solov’ev 1966). On the other hand, the absence of any symmetry, other than axial 
symmetry, in toroidal geometry has rendered the study of toroidal stellarator magnetic 
fields much more difficult and rigorous proofs of the existence of exact magnetic 
surfaces for this case have not appeared for this reason (Grad 1967). The bending 
and joining of periodic ends of a cylindrical stellarator to form a toroidal one introduce 
a toroidal curvature which breaks the helical symmetry of the straight system. In 
general, magnetic surfaces for this case can be expected to exist only in an approximate 
sense. This expectation has been supported by numerical calculations (Gibson 1967, 
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Blamey et a1 1982) which, unfortunately, do not yield any general quantitative 
estimates on the extent to which a given field line may be said to be confined to a 
magnetic surface. This question may be considered as a problem in the study of 
dynamical systems close to integrable ones (e.g. Nehoroshev 1977). The purpose of 
this paper is two-fold. (1) To obtain the symmetry-breaking toroidal perturbations 
for the class of stellarator magnetic fields which have cylindrical symmetry in the 
zeroth order; and (2) to formulate the problem as a problem of a conservative 
Hamiltonian system under small non-stationary perturbations and thus take advantage 
of established methods to obtain some consequences of toroidal curvature. 

The perturbation theory developed here is intended to be sufficiently flexible to 
be applicable to a variety of current distributions and helical winding laws. In the 
next section, it is shown how a current distribution produced by a set of helical 
conductors with rectangular cross sections wound on the surface of a torus may be 
Fourier analysed into a series of a harmonic current distributions. Such a harmonic 
analysis will be seen to simplify the problems considered. 

The nature of the magnetic field produced depends sensitively on the current 
distribution on the toroidal surface. Hence it is important to satisfy the boundary 
conditions which have not always received adequate attention in the literature. This 
aspect is discussed in § 3 and a general method of solution which ensures that the 
boundary conditions are satisfied is indicated there. 

The present theory employs a direct inverse aspect ratio expansion without resort- 
ing to ordering schemes used by previous authors (Greene and Johnson 1961, Dobrott 
and Frieman 1971). Here, the cylindrical case plays a fundamental role and the 
conditions under which the cylindrical limit is obtained are derived in § 4. In passing, 
exact solutions to some cylindrical problems which have hitherto received only approxi- 
mate treatments are also written down in 8 4. 

The main results of this paper are presented in 8 5, where the effect of toroidal 
curvature is seen to produce symmetry-breaking toroidal perturbations. The field line 
equations of the toroidal stellarator are cast in the form of a conservative Hamiltonian 
system under small non-stationary perturbations which arise from toroidal curvature. 
The system of equations is discussed using the method of averaging and approximate 
magnetic surfaces are obtained to indicate some of the consequences of toroidal 
geometry in 86. In the concluding section a summary is presented and further 
developments are indicated. 

2. Harmonic analysis of a current distribution 

In a previous paper (Sy 1981), it was shown that the use of proper toroidal coordinates 
can lead to accurate expressions for the magnetic field. Unfortunately, the toroidal 
perturbations which break the helical symmetry of a cylindrical stellarator cannot be 
obtained conveniently from these expressions. Instead, it will be convenient to obtain 
these perturbations, using the common quasi-toroidal coordinates ( I ,  8,4), where 8 
and 4 are respectively poloidal and toroidal angles. These coordinates have the 
additional advantage of simple geometric interpretation inside a torus, which will be 
taken to have minor radius a and major radius Ro. 

In practice, current-carrying helical conductors usually come in the form of copper 
strips with a rectangular cross section having a width D and thickness T. To produce 
the classical stellarator magnetic field, a system of such conductors carrying a uniform 
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current is wrapped on the toroidal surface (see figure 1) according to the classical 
winding law 

e - Bo = (m/l) i$  (1) 
where Bo is the initial poloidal angle at the i$ = 0 meridonal plane, m is the number 
of toroidal periods and I is the multiplicity of the device. Although the winding law 
( 1 )  may be generalised to include modulations, discussions are here limited to this form. 

Figure 1. Schematic definitions of the angular width w of the helical conductors and of 
the quasi-toroidal coordinates (r, 0,d). The insert indicates the d = 0 locations of helical 
conductors of a classical I = 2 stellarator. 

The angle w (radians) subtended at the minor axis by the helical conductor is 

(2) 
where U is the angle between the conductor and the generatrix in the toroidal direction. 
From geometric considerations, toroidal effect gives rise to a modulated cos U, which 
reads, to leading terms, 

given by 

w = D / a  cos u 

E v 2  cos ? c o s u = 7 ( 1 - 5  1 1 + v 2  

l + v  ( 3 )  

where B is the poloidal position of the centre line of the conductor, E = a/Ro is the 
inverse aspect ratio and v = Em/l. For typical cases of interest, one has Y < 1 and 
ev2/2(1  + U’) << 1. Hence w in (2) may be taken as a constant, independent of 0, to 
a sufficient degree of accuracy. 

If the total current through each conductor is I,, then the current distribution for 
the toroidal stellarator may be specified by 

dI/deo= ( L / W ) f ( @ o )  (4) 

where f ( O o )  is a series of step functions, specifying the locations of the finite-size 
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conductors and directions of their currents. In the case of a stellarator of multiplicity I 

where n = 1,2 ,3 ,  , . . ,21- 1. The corresponding torsatron has half the number of 
windings with currents all flowing in the same direction. In this case, f(eo) is still 
formally given by (9, but values of n are restricted to 2 ,4 ,  . . . ,21- 2. Fourier analysis 
of f(&) shows that for stellarators 

d I  2II, E a, COS neo -=- 
de0 IT n 

where the summation is taken over n = 1, 31, 51, . , . , whilst for torsatrons 

with summation over n = 1,21,31,. . . . For either case, the Fourier coefficients in these 
expressions are given by 

The above results show that, in general, torsatron fields have all harmonics of 1, 
whilst stellarator fields have only the odd harmonics. Certain harmonics may be 
eliminated by choosing a width w, such that sin(nw/2) = 0. The case of infinitesimally 
thin filamentary conductors may be obtained in the limit as w vanishes. Magnetic 
fields due to such singular current distributions for a cylindrical stellarator has been 
considered by a number of authors (Aleksin 1962, Maschke 1969). It may be seen 
from (8) that the Fourier coefficients for this case are all equal to unity, i.e. a, = 1 for 
all n, and hence the harmonics all have equal strengths. It will be seen in 9 4 that the 
difficulties in obtaining exact magnetic surfaces by the previous authors can be 
overcome by the present method of harmonic analysis. 

So far, the discussion on the analysis of the current distribution has not taken into 
account the finite radial thickness T of the helical conductors. Provided T2<< u2w 
(this will be shown in 0 4) the radial thickness has little consequence and more 
importantly, it does not give rise to any additional harmonics. 

3. Magnetic vector potential and magnetic field 

In principle, any vacuum magnetic field may be derived from a suitable magnetic 
scalar potential, which satisfies Laplace’s equation. Since formal solutions to Laplace’s 
equation are known in toroidal coordinates (see e.g. Moon and Spencer 1971) it may 
appear that a particular potential may be obtained by matching fields at current layers 
on the toroidal surface (Kovrizhnykh 1963). However, it has been pointed out by 
Bhadra (1968) that this method does not generally simplify the problem since for 
realistic current distributions, such as those considered in the previous section, the 
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boundary conditions lead to difficult problems in the determination of the coefficients 
of the toroidal harmonics. 

Since the Biot-Savart law is actually a formal solution to the general boundary- 
value problem by the use of a Green function, its use will guarantee satisfaction of 
the boundary conditions though, in practice, difficult integration problems may be 
encountered. In this paper, the method of the Biot-Savart law is used and it will be 
shown that the integration problems may be solved in a systematic way. 

On account of the toroidal geometry of the current distribution, it is convenient 
to use the form of the Biot-Savart law derived for quasi-toroidal coordinates (Sy 
1981). In contrast to a previous application of this method (Aleksin 1963), advantage 
is taken of the symmetry of a stellarator current distribution before integrals in the 
Biot-Savart law are evaluated. This leads to significant simplifications. 

It follows from the previous section that the current distribution may be Fourier 
analysed into a sum of harmonic current distributions. It will suffice mathematically 
to discuss one harmonic distribution, which will be taken hereafter to be the funda- 
mental, since the complete solution may be obtained by superposition of the various 
harmonics. Consider then a stellarator magnetic field produced by the harmonic 
current distribution 

(9) dI/dOo = Io cos le0 

where, from (6), Io = 211aaJ7r. 

3.1. Toroidal magnetic vector potential 

The toroidal magnetic vector potential may be expressed (Sy 1981) as a double integral 
over the current distribution (9) on the torus. The components read (SI units) 

2rr 

A, = ( p 0 1 0 / 4 ~ )  11 (a , /d)  cos(l0‘- m4’)  de’ d4’  (10) 
0 

where the Euclidean distance function d is given by 

d2=2(1+& C O S ~ ‘ ) ( ~ + & ~ C O S ~ ) ( ~ - C O S + )  (11) 

with E = a /Ro ,  p = r / a  and 

1 a’ + r2 - 2ar CO@ - e) 
P S I + -  

2 (Ro+ a cos e’)(Ro + r cos e)‘ 
The components a, may be separated for convenience according to powers of the 
inverse aspect ratio, a, = a:’) + a t ’ .  Explicitly, the zeroth-order components read 

=-cos e sin ++v(sin e cos e’-cos e sin e‘ cos $1 
a Lo’ = sin e sin + + v(cos e cos e’ +sin e sin e’ cos 9) 
a$‘) =cos +- v sin @’sin + 

(13) 

whilst the first-order components read 

a?’ = - E  cos e’ cos e sin + U : )  = E cos e‘sin e sin + a $ )  = E cos e’ cos + 
(14) 
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where the symbol + 
no higher-order components for a,. 

4’ - 4 has been introduced and v 5 Em/l as before. There are 

3.2. Toroidal magnetic field 

Similarly, the components of the toroidal magnetic field B = V x A which corresponds 
to (lo), read 

Z r r  

0 

Here, the separation of the components b, according to powers of the inverse aspect 
ratio, 6, = bio’ + bhf’ + , . , , is not straightforward. Nevertheless, it may be accom- 
plished from a knowledge of the orders of the 4’ or equivalently the $ integrals (see 
appendix 1). It will be seen that the components of b, have terms up to and including 
the third order in the inverse aspect ratio, and no higher orders. These read 

b:’) = - E  sin 5 + v cos 5 sin 4 
bio’ = E  cos [+ v sin [ sin $ - ~ p  cos $ 

b:’ = E V ( P  cos 5-cos 4 )  
bl” =-E’ cos elsin [+sin ~ ( I - C O S  $ ) + E V  cos e sin 1// 

bL1) = E 2  cos e’ cos 5 +cos e( i  -cos +) + E V ( P  sin @‘-sin e) sin 9 
bg’ = E sin + ( p  sin e -sin e‘) + v cos e’(i -cos +) 

(16) 

(17) 

b!*) = E sin([ + 2e)( i  -cos 4 )  
@ = E  C O S ( ~ + ~ ~ ) ( ~ - C O S $ )  

b I“ = E cos e sin e’ cos e’(i -cos +) 

bf’ = -e2 sin e sin e’ cos @’(I -cos $1 

b:) = cos @sin + ( p  sin e -sin e’) -&up sin @sin e(1 -cos $1 

bg’ = 0 

where 5 = 19’ - 8 has been introduced. 
On account of the complicated form of d given by (11) and (12), the integrations 

in (10) and (15) are well known to be difficult (Aleksin 1963, Sy 1981). Nevertheless, 
the integrals will be evaluated here as a power series in E by writing 

where A = 1+3S2, A=cos 8 ’ + p  cos 8 and 

62=(a2+rz -2a r  cos l ) / R i .  
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The method indicated here differs from that introduced by Aleksin (1963) and applied 
by subsequent authors (Kalyuzhnyj and Nemov 1977). This aspect is discussed below. 

4. The cylindrical limit 

Mathematically, toroidal geometry and cylindrical geometry are quite distinct; for 
example, a toroidal surface is topologically compact and has two periodicities whereas 
an infinite cylindrical surface is non-compact and has only one periodicity. Indeed, 
in certain problems on stability of an axisymmetric toroidal equilibrium (Lust et a1 
1961), toroidal results do not tend to cylindrical results as the aspect ratio tends to 
infinity. Moreover, there are perturbation theories of toroidal stellarator fields (Alek- 
sin 1963, Dobrott and Frieman 1971, Fielding and Hitchon 1980) which do not tend 
asymptotically to cylindrical limits as the aspect ratio tends to infinity. The pitch 
length in these theories are assumed to be long, in such a way that v = &m/Z vanishes 
in the limit of infinite aspect ratio. These classes of stellarators require large currents 
in the helical windings to produce a significant rotational transform. 

On the other hand, from a study of helical windings on the torus (Tayler 1965, 
Sy 1981), it may be shown that the geodesics on the torus approach those of a straight 
circular cylinder as the aspect ratio tends to infinity provided v 2 > 2 & .  That is, the 
pitch length of the helices must be sufficiently short to overcome the effects of toroidal 
curvature. Under these circumstances, it is then not surprising that the cylindrical 
limit should exist. Previous studies suggest that the cylindrical limit might be obtained 
under the conditions: 

It will be shown that, indeed, under these conditions, the toroidal magnetic vector 
potential and magnetic field both approach uniformly those of the corresponding 
cylinder. It is appropriate then to take this as the zeroth order in our perturbation 
theory. 

4.1. Vector potential and magnetic field 

The zeroth-order quantities may be obtained from taking d = &(A -cos t,b)1’2, where 
A = 1 + $ S 2  and S is defined by (21). Note that, as in classical potential theory, it is 
necessary to retain S 2 # 0  in d to avoid singular integrands in (10) and (15) due to 
vanishing denominators. On performing the i,b integrals (see appendix l ) ,  the zeroth- 
order magnetic vector potential reads 

where one defines 

F, Y sin lQ, sin t sin lJKo(x) 

Fe = v cos lQ, cos 5 cos l l & ( X )  

F* E COS IQ, COS l K o ( ~ )  
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whilst the corresponding magnetic field reads 

with definitions 

G, =sin I@[EZm2 sin f5 sin [Kl (x) /x  +Emv cos 15 cos 5Ko(x)]  

G, =cos fQ[-E2m2 cos Ig(r - a cos 5)K1(x)/ax + mzv sin f5 sin [ ~ o ( x ) ]  

G+ = -COS f @ c Z m 2  cos 15(a - r cos [ )K l (x ) /ax .  

In these expressions, KO and K1 are modified Bessel functions of the second kind, 
and it has been convenient to introduce the helical variable @ and the argument x by 
the definitions 

@=6-(m/l)q!J (27) 

x 2 =  m Z a 2 =  k 2 ( a z + r Z - 2 a r  cos 5) (28) 

(26 )  

where k = m / R o  may be regarded as a toroidal pitch parameter. 

components of the magnetic vector potential read 
On performing the remaining 5 integrals in (23) and (25 )  (see appendix 2), the 

A?' = -polo sin IQ[Kl(ka)ll (kr)  + (a / r )KI  (ka ) l l (k r ) ]  

ALO) = -polor-' cos I Q [ ( a / v ) K l ( k a ) l l ( k r )  + r v K ;  ( k a ) ~ ;  (kr ) ]  

A$') =polo COS I@Kl(ka)Il(kr)  

(29 )  

whilst the components of the magnetic field read 

B:') = kb l ;  (kr)  sin f @  BLo) = (Ib/r) l { (kr)  cos I @  Bjbo' = -kbl{(kr) cos IQ, 
(30) 

where b = -poloKI (ka ) .  Consider a corresponding problem in cylindrical geometry 
with a harmonic current distribution given by ( 9 )  and a winding law 6 - 60 = ( k / f ) z .  
It may be verified that with identifications dr/dq!J = -Ro  and @ = 6 - ( k / f ) z ,  the 
magnetic vector potential and magnetic field obtained are identical to (29 )  and (30) 
respectively. Moreover, one has V A = 0, V B = 0 and B = V x A as required. 

4.2. Solution to a stelfarator problem 

The calculation of magnetic fields due to a set of thin helical current filaments on the 
surface of a cylinder has been considered by Aleksin (1962) and Maschke (1969).  
These authors calculate the field due to each individual filament and then superpose 
the results for the set to obtain the resultant field of stellarators and torsatrons. Due 
to the singular nature of the current distribution and a lesser degree of symmetry, the 
expressions for a single filament are rather awkward and only approximate results 
have been obtained. Here, it will be shown that the method of Fourier analysis 
discussed in 9 2 leads to an exact solution in a straightforward way. 

Consider the magnetic field produced by the helical current distribution (4) and a 
uniform axial field Bo. The superposition of harmonic magnetic fields given formally 
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by (30)  yields the general expressions 

B, = 1 nab,Ik (nar )  sin nQ, 
n 

nbn 
= - I,(nar) cos n@ (31). 

n r  

B, =Bo-C nab,I,(nar) cos n@ 
n 

where the summation is taken over the appropriate multiples of 1 and @ = 8 - cyz is 
the helical variable, with a = k/l. Note that in the case of torsatrons without an 
additional axial field Bo = p010al/4.rr, otherwise Bo is arbitrary. The coefficients b, in 
the above expressions are defined by 

b, =2poIoa,aaKk (naa)/.rr (32) 

where a, =sin($nw)/($nw), as was defined by (8) .  

may be identified as the magnetic surface function, exists and it reads 
On account of helical symmetry in the cylindrical case, an exact invariant, which 

T = i r 2 - 1  (b,/Bo)rIk(nar) cos n@. 
n 

( 3 3 )  

The expressions ( 3  1)-(33) represent an exact solution to the cylindrical stellarator 
problem considered; other properties such as the position of separatrices or the 
rotational transform may be deduced from these results. The limiting case of w = 0 
is the problem of thin filaments considered by the previous authors. 

4.3. Conductors with finite radial dimension 

From the expressions obtained for the magnetic field, it is now convenient to discuss 
the effect of finite radial dimensions of the helical conductors. It may be seen that 
on summing infinitesimally thin current layers for helical conductors extending radially 
from a -i T to a +$T, the coefficients b, in (32) must be replaced by 

a + f T  

b, = 2p010anff r*KL(nar) dr. 
TaT a-:T 

(34)  

Provided the total current through each conductor remains In, the magnetic field is 
still given formally by ( 3 1 ) ,  but b, is determined by (34) .  Analysis of the expression 
in (34) shows that b, in this case differs negligibly from b, given by (32)  provided 
T 2  << a2w. which is satisfied under usual circumstances. 

5. Effects of toroidal curvature 

The effects of toroidal curvature may be included by retaining terms of higher order 
in the inverse aspect ratio. The general procedure for doing this has been indicated 
in 0 3 .  Here, the effects of toroidal curvature will be discussed by including toroidal 
perturbations to first order in the inverse aspect ratio for the magnetic vector potential 
and magnetic field produced by the harmonic current distribution (9). 
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5.1. Toroidal perturbations 

It follows from expressions derived in § 3 that the first-order perturbations to the 
magnetic vector potential and the magnetic field are given respectively by 

and 
2-  

Evaluation of the integrals in these expressions is tedious but straightforward. Since 
it follows similar steps to those indicated in the previous section for the zeroth-order 
terms, the intermediate results will be omitted, but some useful relationships in carrying 
out the calculation are recorded in the appendices. The final expressions then may 
be written 

and 

where R, (If l)@ f r and r 5 mq5/1. Note that the angular variables SZ, are separated 
into the variable of helical symmetry a= 13 - (m/ l )+  and the toroidal variable r which 
breaks this symmetry. Moreover, it is seen that toroidal curvature creates l i l  
sidebands. The coefficients a: and b$ are functions of r only, independent of the 
angular variables and they are given by 
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seen that a toroidal stellarator magnetic field can be regarded as composed of two 
parts: the first part is identical to a cylindrical stellarator field, possessing helical 
symmetry and independent of T ,  whilst the smaller second part arises from toroidal 
curvature and depends sinusoidally on T ,  breaking the helical symmetry. 

5.2. Magnetic field line equations 

The effect of toroidal geometry on the magnetic structure may be studied from a 
suitable system of equations for the magnetic field lines. On writing the axisymmetric 

BoROfl, * - L J - * - . 2 A A -  1 I--.. L - :..*-->..-- > 
IGW Lwiwiuai  vaiiauic b i i iay w c  I~ IL~WUULGU 

* - - L I l - .  
wiuiuai ii1ag-k- .D&O - 
by 

dT/dt = B&/Bo. (41) 

As shown above, the zeroth order field lines, unperturbed by toroidal curvature, have 
an invariant 'Po given by 

'Po~ip*-(b /Bo)pl :  ( Ivp)  COS IQ, (42) 

where b/Bo= -vtzIKI (Iv) and tzI = ~ o l o / B o a .  The field line equations for the toroidal 
case may then be written 

where 8 = Q, + 7 and B!) are sinusoidal functions of T. To the accuracy required, one 
may identify here the independent variables T and t. 

From (43), it can be seen that the unperturbed system is a conservative system 
with Hamiltonian 'Po and conjugate variables i p 2  and CP., Hence the whole system 
with the symmetry-breaking toroidal perturbations may then be regarded as a con- 
servative Hamiltonian system under small non-stationary perturbations. 

6. The toroidal magnetic structure 

The effect of toroidal curvature on the magnetic structure is now examined by applying 
the method of averaging (Bogolyubov and Mitropolskii 1961) to the system of 
equations (43) to obtain approximate magnetic surfaces. A meridonal section of the 
torus can be regarded as a PoincarC section for the 'motion' of a magnetic field line 
circulating around the torus according to the equations of motion (43). From 
asymptotic arguments, it is reasonable to anticipate that for sufficiently small toroidal 
curvature, magnetic surfaces would exist and that they are slightly distorted from 
those of the unperturbed system. 

For cases considered in this paper, a particular field line experiences several helical 
field periods on going once around the torus before returning to a reference meridional 
plane. The toroidal perturbations are sinusoidal functions of t, which goes through 
several periods on one transit around the torus. Hence to obtain sections of magnetic 
surfaces at one meridional plane, averages over t may be used. The average of a 
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function f over t, which has a period 21r, may be defined by 

(f)=-j 1 2rr fd t .  
2lT 0 

(44) 

On introducing generalised coordinates xi, the system of equations (43) can be written 
in a general form 

(45) 

where fi is the oscillatory part. In using the method of averaging, new variables Si, 
sometimes called averaged variables, are introduced by 

(46) 

I. 

dx'ldt =f'=(f')+f'  i = 1 , 2  

x i  = 6' +f?'((', t) 

where f?' are oscillatory functions defined by 

= j'&', t') dt' - (1 ' &', t') d t ' ) .  (47) 

It can be shown (e.g. Morozov and Solov'ev 1966) that for smallf' - O(E), the averaged 
equations are given by 

(48) 

Within the present approximations, the last term in (48) is of the order e 2  and may 
be neglected. From (43) and ( 4 3 ,  it can be deduced that an approximate invariant 
is given by Po((') = constant. From an inversion of (46), it may be seen that the true 
magnetic surfaces including terms of order E are given by 

d('/dt = (fi)  + (P(af'/a[')). 

q(x i ,  t)=Po(x')-p(xi, t)aPo/ax'=constant. (49) 

It may be verified directly by differentiation that 

dP /d t  = N / a t +  (dx'/dt)(aP/ax') = O(E') .  

To provide the simplest illustration of the effect of toroidal curvature, consider 
only toroidal variation of the superimposed axisymmetric toroidal magnetic field. In 
this case, the magnetic surfaces may be written 

~ ( p ,  e, 4 )  = $ p 2  - ( b / ~ ~ ) p ~ ;  (zvp)[cos(fe - m4) + b p  sin e sin(/@ - md)]. (50)  

For cases, where Em < 1, asymptotic forms of the Bessel functions in (50) may be 
used to reduce the expression to a simple approximate form: 

~ ( p ,  e, 4 )  = $ p 2  - ( E I / 2 v i ) p ' [ ~ ~ ~ ( i e  - m4) + b p  sin e sin(/@ - m4)]. (51) 

Examples are given for an 1 = 2 case in figure 2 and an 1 = 3 case in figure 3. An 
indication that toroidal curvature breaks the helical symmetry may be seen from the 
fact that, allowing for a suitable poloidal rotation, the magnetic surfaces no longer 
preserve their form as the toroidal angle is advanced. 

Unlike other systems of magnetic field line equations in the literature (e.g. 
Kalyuzhnyj and Nemov 1977), the right-hand sides of (43) are small near the separatrix 
region and hence we have been able to use (49) to obtain magnetic surfaces in the 
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0 

Figure 2. Effect of toroidal curvature on I = 2 magnetic surfaces. Full contours denote 
sections of outer magnetic surfaces for the toroidal case, whilst the broken contours denote 
those for the corresponding cylindrical case, for various values of m&: ( a )  0", (6)  90", ( c )  
180", (d) 270". The vacuum chamber has inverse aspect ratio 0.3, major axis to to the 
left of diagram and minor axis located by a cross. 

outer regions. It has been seen that symmetry-breaking toroidal perturbations cause 
shifts in the location of separatrices determined by the singular points of (43) and 
they give rise to distortions of the magnetic surfaces. However, these perturbations 
have been calculated in this paper only for a toroidal stellarator with classical helical 
windings. Numerical studies (Blamey et aE 1982) suggest that adverse effects of 
toroidal geometry might be alleviated by suitable modulations of the classical windings. 
The present study indicates that indeed it appears fruitful to minimise the non- 
stationary terms on the right-hand side of (43) to reduce the effects of toroidal 
curvature. It is therefore not worthwhile at this stage to present numerical examples 
of magnetic surfaces for extensive ranges of parameters merely for the cases of classical 
windings. 
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Figure 3. Effect of toroidal curvature on I = 3 magnetic surfaces; parameters and descrip- 
tion are same as those for figure 2. 

7. Concluding remarks 

In this paper a new perturbation theory of the toroidal stellarator magnetic field has 
been presented. The zeroth-order theory is identical to that of the cylindrical stel- 
larator and may be obtained in the limit as the number of toroidal periods m and 
major radius Ro both tend to infinity in such a way that k m/Ro remains finite. In 
ordering schemes where m is not ordered as such as those considered by Dobrott 
and Frieman (197 1) and Fielding and Hitchon (1980), where m = O(E- ’ ’~ ) ,  the 
cylindrical limit is not obtained as E tends to zero. 

The toroidal perturbations have been shown to be purely geometric in the sense 
that they vanish in the limit of zero toroidal curvature. These perturbations are seen 
to break the helical symmetry of the cylindrical limit and render the magnetic structure 
truly three dimensional, requiring for description a toroidal .variable in addition to a 
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helical symmetry variable and a radial coordinate. The toroidal perturbations calcu- 
lated are more general than those obtained by previous authors, particularly in the 
following respects. (i) Unlike those of Kalyuzhnyj and Nemov (1977) and others, the 
expressions are applicable to all regions inside the torus, including the separatrix 
region. (ii) No ordering assumptions, such as those of Greene and Johnson (1961) 
and Dobrott and Frieman (1971) have been made about the helical field amplitude 
as compared to the superimposed toroidal field. (iii) The long pitch length assumption: 
v = Em11 << 1 (Aleksin 1963) has not been made. 

In using the Biot-Savart law to calculate magnetic fields which satisfy explicitly 
actual boundary conditions on the torus, such as those associated with finite-size 
helical conductors, it has been shown that analysis of the current distribution into a 
series of harmonic distributions can lead to considerable computational simplification, 
as well as insights into harmonic generation due to finite dimensions of the helical 
conductors. Exact expressions for the magnetic surfaces of the cylindrical case have 
been derived for current distributions with finite-size helical conductors. 

The effect of symmetry-breaking toroidal perturbations on the cylindrical system 
has been formulated as a problem of non-stationary perturbations in a conservative 
Hamiltonian dynamical system. From approximate analytical methods, toroidal cur- 
vature has been shown to lead to distortions of magnetic surfaces, as expected from 
numerical studies (Blamey et a1 1982). It is beyond the scope of the present paper 
to give a fuller mathematical discussion of the system of equations (43); the paper by 
Nehoroshev (1977) contains some recent mathematical advances relevant to this 
problem. In conclusion, we note that modulations of the helical windings on the torus 
may reduce the perturbative terms in (43) and thus lead to a partial restoration of 
helical symmetry. This aspect appears worthy of further investigation. 
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Appendix 1. Approximations and expansions of the r(l integrals 

The basic (/I integral of interest has an exact representation in terms of generalised 
associated Legendre functions: 

This result can be proved by applying differentiation formulae to the well known n = 0 
case (Hobson 1931). 

When m >> 1, A = 1 + i S 2  and S<c 1, Qk-l/2(A) may be expanded in a series of 
modified Bessel function K,,(x) (Robin 1958) 

(A1.2) 
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where x = m[2(A - l)]'" = ma. It follows that to the leading term 

2.77 cos m$ d$ 2fi(2m)2nn ! 
Kfl(x) .  10 (A -COS $)"+l/' = x n  (2n)! 

(A1.3) 

For most applications in the present paper only low values of n are required. In 
particular, the following list, which may be deduced from further calculations using 
(A1.3), has been found to be useful. 

'* cos m$( 1 -cos $) d$ 
= 2 J z ( K o ( ~ )  -xKl(x)) I, (A -cos +)3/2 

cos m$ cos $ d$ 
= 4JZm2K1(x)/x I:' (A -COS $)3/2 

(A1.4) 

(A1.5) 

(A1.6) 

(A1.7) 

(A1.8) 

(A1.9) 

The orders, with respect to the inverse aspect ratio E ,  of these integrals may be seen 
from m = O(E-') ,  S = O ( E )  and x = O(1). 

Appendix 2. Evaluation of the 4' integrals 

For x' = k 2 ( a z  + r' - 2ar cos f ) ,  Ko(x)  may be expanded into a Fourier series by an 
addition theorem (Watson 1966) 

m 

Ko(x)  = c Kn(ka)ln(kr) cos nf .  
n=--00 

(A2.1) 

Partial differentiations with respect to the arguments ka, kr and f can be used to show 

k(a - r  cos t ) K l ( x ) / x  = - 1 Kh (ka)l,(kr) cos n f  (A2.2) 

k (r -a  cos f ) K l ( x ) / x  = - K,,(ka)lL(kr) cos nf (A2.3) 

co 

n=-m 

m 

n=-m 

k'ar sin f K l ( x ) / x  = f nKfl(ka)ln(kr) sin nf .  (A2.4) 
n=-m 

The 4' integrals occurring in 9 5 are defined as follows: 

1 r 2 n  

(A2.5)  
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2w 

P,, = I sin [ sin n[Ko(x) d[ 
2.rr 0 

(A2.6) 

(A2.7) 1 
2 T o  

Q, =-COS [ COS n[Ko(x) d5 

2 w  

R,, 1 sin [sin n[(K1(x)/x) d l  
2.rr 0 

r 2 w  

S, =L J 2.rr 0 
(COS 5 - p )  COS n t (K l (x ) /x )  d[ 

(A2.8) 

(A2.9) 

(A2.10) 

2rr 

U,, sL I cos n[(xKl(x)) dL (A2.11) 
2.rr 0 

1 2rr 

1 2n 

V,, = - cos 5 cos n[(xKl(x)) d[ 

w,, =G Jo sin [ sin n[(xKl(x)) d[. 

2.rr Jo (A2.12) 

(A2.13) 

These integrals can be evaluated on applying the following relationships, where K,, 
has argument ka and I,, has kr, 

0, = K,,I,, 
R,  = -(Q,, +KLIL)/n S,, = K,,IL/ka T,, = K ;I,,/ ka (A2.14) 

Pfl = ?CO,-, - On+d 0, = m - 1 +  O n + * )  

U, = k2arP,/n v,, =~(U,,-1+Un) w,, = $(U,,-, - U,) 

where Po = Ro = U. = WO = 0 and VO = U1. 
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